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ABSTRACT 

A Banach space has property (S) if every normalized weakly null sequence 
contains a subsequence equivalent to the unit vector basis of c0. We show that 
the equivalence constant can be chosen "uniformly", i.e., independent of the 
choice of the normalized weakly null sequence. Furthermore we show that a 
Banach space with property (S) has property (u). This solves in the negative 
the conjecture that a separable Banach space with property (u) not containing 
11 has a separable dual. 

1. Introduction 

A Banach space X is said to have property (S) if every normalized weakly 

null sequence in X admits a subsequence which is C-equivalent to the unit 

vector basis of  Co for some C < oo. If the constant C is independent of the 
particular sequence we say X has uniform (S) or (US). A second property 
relating the internal structure of a Banach space to that of  co is property (u). 
One way of formulating this property is to say X has property (u) if whenever 

(x,) is a weak Cauchy but not weakly convergent sequence in X, there exists 

(y.), a block basis of convex combinations of (x,), which is equivalent to the 
summing basis for Co. 

The definition of property (u) is due to A. Petczyhski [P]. He defined the 

property as follows. If x** ~X** is the w*-limit of  a sequence in X then there 
exists (y.) c_ X, which converges w* to x** and satisfies 

o~ 

Y, Ix*(y.+l)-x*(y.)l <oo  f o r a l l x * ~ X * .  
n ~ l  
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(In the terminology of [HOR], Bt(X)C_ DBSC(X).) The equivalence of our 
definition and Petczyfiski's was noted in [HOR] and follows easily from the 
fact that if (x,) c_ X also converges 09* to x**, then dist(conv (x,), conv (y,)) = 
0. By [BP1] and [R], if X has property (u) and Y is any infinite dimensional 
subspace of X, then Y is reflexive or contains Co or 1~. Since every subspace of a 
space with unconditional basis has property (u) [P], it was conjectured by 
J. Hagler that if X is a separable space with property (u) and not containing lt, 
then X* is separable (see [H]). 

In w we prove that property (S) implies property (u). In view of the tree 
space JH constructed by Hagler [H] this yields a negative answer to the 
conjecture. Indeed Hagler showed JH has property (S), does not contain l~ and 
has nonseparable dual. 

Property (S) was considered by P. Cembranos in [C]. It was noted to be 
equivalent to the "hereditary Dunford Pettis property": every (infinite dimen- 
sional) subspace of X has the Dunford Pettis property. This equivalence 
follows easily from the deep "nearly uncondit ional" theorem (Theorem 2.4 
below) ofJ .  Elton ([E]; see also [O]). The question whether (S) implies (US) is 
raised in [C] (and was originally brought to our attention by A. Petczyfiski). We 
show this to be true in w Part of our argument requires a generalization of 
Elton's argument for the aforementioned theorem. 

A corollary of our two main results (see Corollary 2.3) is that Xhas  property 
(S) iffthere exists C < ~ so that whenever (x,) __. Ba(X) is weak Cauchy, there 
exists a subsequence (x~) with 

[X*(Xt+I)  - -  X*(X~) I ~ C 
n=l  

for all x* ~Ba(X*). 

(Equivalently 

k ) 
Y, e, (x" + l - x ' )  < C for all k and ei = _+ 1. 

n = l  

This contrasts nicely with property (u) which may be described similarly 
except that (x ')  is not necessarily a subsequence of(x,)  but rather a block basis 
of convex combinations of (x,). 

We use standard Banach space terminology as may be found in the 
books [LT] or [D]. The proofs of  both our main results require some Ramsey 
theory (as can be found in [O], [LT] or [D]). The summing basis for Co 
is the basis (s.) given by s. = Y..f=~ el, where (ei) is the unit vector basis 
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of Co. Finally, it is perhaps worth noting that 1~ has property (S) and by [R], 
if X has property (S), then every infinite dimensional subspace of X contains 
11 or Co. Both properties (S) and (u) are hereditary (the later case is due to 
Petczyflski [P]). 

We wish to thank H. Rosenthal for useful discussions regarding this 
paper. 

2. Property (S) implies Property (u) 

THEOREM 2.1. I f  X has property (S), then X has property (u). 

We first review the Ramsey theorem we require. If  M is an infinite 
subsequence of N, [M] denotes the set of all (infinite) subsequences of M. z is 
the pointwise topology on [N], i.e., the relative topology of[N] _ 2 N, given the 
product topology. ~r ___ [N] is said to be Ramsey if for all M E [N] there exists 
L ~ [M]  such that either [L] ___ ~r or [L] C_ [ N ] \ d .  It is known that if ~r is 
z-Borel then ~r is Ramsey [GP]. For a proof  of this result, some history and 
more general results see [O]. 

PROOF OF THEOREM 2.1. Let (x,) c__ Ba(X) be weak Cauchy but not weakly 
convergent. By passing to a subsequence we may assume that (xn) is basic and 
moreover (yn) is seminormalized basic where y, - - x ,  +~ - x~ [BP 1 ]. (Since X 
has property (S), we could have also assumed, by passing to a subsequence, 
that (Y2") or (Y2n- ~) is equivalent to the unit vector basis of Co. If  we could 
obtain this simultaneously for both sequences, we would be finished and this is 
where Ramsey theory enters.) 

For k and K ~ N define 

Mk(K) = { M E  IN]" M = (mi) satisfies 

for all e = + 1, 1 < i  < k } .  

k 
Y, e~(xm2,-xm2,_,) _-<K 

i~l  

,~k(K) is z-closed and thus ~ir .~r is also z-closed and 
d2~ ~ U k L  1 d ~ ( g )  is z-Borel. Consequently ~r is Ramsey. Choose M = (m~)~ 
[N] so that either [M] ___ M or [M] c_ [N] \ M. Since X has property (S) we 

obtain [M] __ M. Thus MEM(K~) and (m~)?~_2EM(K2) for some Ki, K2. It 
follows that for x* EBa(X*), 
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Y, IX*(Xm,.,)-- X*(Xm,)I 
i = l  

= ~ Ix*(x~)-x*(Xm~_,)l + ~ ]X*(Xm~,+)--X*(X~,)I 
i = 1  i = 1  

<Kl  +/(2. 

In Petczyfiski's terminology [P], X Xm, is a w.u .C.  In particular (Xm,+,  - -  X m , ) i ~  1 

is equivalent to the unit vector basis of Co and so (Xm,) is equivalent to the 
summing basis for Co. �9 

REMARK 2.2. If X has property (US), the proof  yields a fixed K satisfying: 
if (x,) is a weak Cauchy sequence in Ba(X) then there exists a subsequence 

(Xm,) with 

(2.1) ~ IX*(Xm,+,)-x*(Xm,)[ <<-K 
i - I  

for all x* ~Ba(X*).  

In fact this turns out to be an equivalence. 

COROLLARY 2.3. X has property (US) iff there exists K <  oo such that iJ 
(x,) c_ Ba(X) is weak Cauchy, then there exists a subsequence (Xm,) o f (x , )  
satisfying (2.1). 

The proof  requires Elton's nearly unconditional theorem which we first 
recall. 

THEOREM 2.4 (Elton [E]). For 0 < J < 1 there exists a constant K(J) < oo 
such that i f(x,)  is a normalized weakly null sequence in a Banach space, then 
there exists a basic subsequence (x'~) with the following property. I f  (a~)~ c_ R 
with [ ai l < 1 for all i, and F c_ { i :l all ~ J } ,  then 

(2.2) • a,x'i < K(J) ~ aix'i . 
i E F  i = l  

PROOF OF COROLLARY 2.3. By Remark 2.2 it suffices to show that X 

has property (US) if it satisfies the condition in the corollary. Let (x,) be 
a normalized weakly null sequence in X which satisfies both the conclusion 
of  Theorem 2.4 and condition (2.1). We may assume that 2 -1 suplai l  < 
II y" aix~ II and thus we have (x2,) is 2 .K.K(1)-equivalent  to the unit vector 

basis of  c0. Indeed i f F  _ N is finite, then by (2.2) and (2.1) 



Vol. 67, 1989 Co SEQUENCES 157 

Y~ ---x2, <K(1)  ~ +_(X2n--X2n_l)~K'K(1). �9 
n E F  n ~ F  

3. Property (S) implies Property (US) 

THEOREM 3.1. I f  X has property (S) then X has property (US). 

One's first thoughts on this theorem are that it is false. The counterexample 
should be X = (Y, Xn)co where the Xn's are a sequence of bad Co'S (e.g., 
X, = C(to~)). However it is easy to construct in such a space a normalized 
weakly null sequence without a c0-subsequence. Theorem 3.1 is proved by 
showing that this construction can be carded out in general. We give some 
definitions to make this precise. 

A sequence (x~) in a Banach space Xis  called a Co-sequence if ]] xi [] _-< 1 for 
all i and (xi) is equivalent to the unit vector basis of Co. For M < oo we say (x~) 
is an M-bad Co-Sequence if (x~) is a c0-sequence with the additional property 
that for all subsequences (x~) of(x~) there exists k ~ N  such that I[ zk-1 X' [[ > 
M. The following proposition, due to W. B. Johnson (see [0]), yields that i fX  
has property (S) but fails to have (US), then X contains M-bad c0-sequences 
for all M. 

PROPOSITION 3.2. Let (x,) be a Co-sequence and let M < oo. Then there 
exists a subsequence (~) of (x~) such that either 

(a) (x,') is an M-bad Co-sequence, or 

(b) II ~iEF X(II --< M for all finite F _ N. 

PROOF. Let 

~r = {L = (/j)E[N]" ~ x , ,  < M f o r  all k ~ N } .  
j - - I  

~r is z-closed and therefore Ramsey. Choose L E [N] such that either [L ] _ 
[N] \ ~r or [L] C_ ~r and let (x[) = (Xi)~eL. In the first case we obtain (a) and in 
the second (b) holds. �9 

We continue with some more definitions. A collection (X~);,neS -- X is called 
an array in X. An array (y?) is a subarray of the array (x?) if there exists 
(m,),~_ ~ 6[N]  such that for all n 6 N ,  (y?)p_ ~ is a subsequence of (xm')~_l. An 

array (x~) is a bad co-array if there exists M, -~ ~ such that for all n EN,  
(x~)~-l is an M,-bad c0-sequence. 

A bad Co- array (x~) satisfies the array procedure (ARP) if 
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(ARP) I there exists a subafray (YF) of  (x~") and reals a. > 0 with 
. = 1  

such that if yi = ,~----I a, YF , then (Yi) has no c0-subsequence. 

a._-<l 

We say X satisfies the ARP if every bad c0-array in X satisfies the ARP. Note 
that if Xcontains a bad c0-array and satisfies the ARP, then X fails (S). Indeed 
i fXconta ins  a bad co-array then by a standard diagonal argument it contains a 
bad Co-array which is basic in some order. The sequence (y,) given in (ARP) is 
thus seminormalized and weakly null. Proposition 3.2 yields that if X has (S) 
but fails (US) then X contains a bad Co-array. Thus Theorem 3.1 will follow 
f rom 

THEOREM 3.3. Every Banach space satisfies the ARP. 

The proof requires several steps which we now state as two propositions and 
a corollary. 

PROPOSITION 3.4. Let (X,) be a sequence o f  Banach spaces each oJ 
which satisfies the ARP. Let (xT) be a bad Co-array in some Banach space 
X and for m E N  set X " = [ ( x D : i E N ,  n>=m]. Suppose that for all 
m E M  there is a bounded linear operator Tm:X m --'X,, with 11 Tm 11 < 1, 
such that (Tmxm)p=~ is an m-bad Co-sequence in Xm. Then (x() satisfies the 
ARP. 

COROLLARY 3.5. If(X,) is a sequence o f  Banach spaces satisfying the ARP , 
then (X X,)co satisfies the ARP. In particular i f  K is a countable compact metric 
space, then C(K) satisfies the ARP. 

PROPOSITION 3.6. Let (xT) be a bad Co-array such that (xF),~176 ~ is an M,-bad 
Co-sequence for all n. Then there exists a subarray (Yr ) o f  (xF ) and w*-compact 
countable subsets K, c_ Ba((Y")*) (where Y" = [yy : m >= n, i EN]) such that 

for all n EN,  (YF ]r .)~l  is an M,/6-bad Co-sequence in C(K,). 

Assuming these three results we give the 

PROOF OF THEOREM 3.3. Let (xF) be a bad c0-array in X. By passing to a 
subarray, if necessary, we may assume that for n E N, (x?)3=~ is an ,4/,- 
bad Co-sequence with M, > 6n. By Proposition 3.6 there exists a subarray (YF) 
and w*-compact countable sets K, c_ Ba((Y")*) such that (YF [Ko)~%l is an 
n-bad Co-sequence. Define T," Y n ~ C ( K , )  by T,y  = y  [r. for y E Y  ~. By 
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Corollary 3.5, C(K,) satisfies the ARP and thus by Proposition 3.4, (y~") 

satisfies the ARP. 

It remains to prove 3.4, 3.5 and 3.6. 

PROOE OF PROPOSITION 3.4. If there exists rn E N  and a subarray (y~") 

of (x~") such that (Tm(yF)),,i is a bad c0-array in Xm, then the fact that the 

ARP works for (T,,(yr)),,i yields that the ARP works for (YF)- Thus by 
passing to a subsequence of (xr)i, for each n, we may assume (by Proposition 
3.2) that 

l for m ~ N  there exists Air,, < oo such that 

(3.1) [ i~FTm xn <Mmforalln>mandfiniteFC_N. 

We shall inductively choose (m. )~[N]  and a subarray (y~") of (xF), with 

(YF)i = (xm")i for all n, reals a. > 0 with Z~=~ a. < 1 and a sequence of reals 

(N.)~=, such that for all n" 

(i) (Tm.(y~))?~=~ is an m.-bad c0-sequence in Am.. 

(ii) II Zi FyP II = No for finite F C N. 
(iii) a ,m,  > n. 
(iv) y~fl-I ajNj <a ,m , /4 .  
(v) Zj~ffin+l a~Mm, < a ,  rn,/4. 
(vi) II z, F II ---< Mm. for 1 > n and finite F _ N. 
First note that (i) and (vi) will be automatically satisfied by the hypothesis of 

the proposition and (3.1). To start let al = �89 and choose m~EN such that 
alml > 1. This defines (Y])i = (xm'), and since (y)) is a c0-sequence we can 
choose N~ to satisfy (ii) for n = 1. The only condition remaining to be satisfied 
for n = 1 is (v) and this will hold provided we require ajMm, < 2 -Ja~m~/4 for 
j > l .  

Let n > 1 and suppose that (aj)}'d~ ~, (mj)~'-t ~ and (Nj)~-~ ~ have been chosen to 
satisfy (ii), (iii) and (iv) for "n" replaced by any integer less than n and in 

addition for 2 < j < n, 

(3.2) 0 < aj < min{2 -J, 2 -Jakmk/4Mm, : 1 < k < j } .  

Choose a, > 0 to satisfy (3.2) for "j" replaced by "n". Then choose m, EN,  

m, > m._~, such that (iii) and (iv) hold. Choose N. so that (ii) holds. 

This completes the induction. Note that by (3.2), (v) holds for all n and 

Z~-I aj < 1. 
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Let (Yk) be given by Yk = ~'j~] ajYJk and let (Yk,) be a subsequence of(Yk). We 
shall show that supt 1] Y-[-i Yk, 11 = ~ and thus (Yk) has no Co-Subsequence. Fix 
n and by (i) choose 1, such that 11 Z[-I Tm.(Yk",) II > m..  Thus 

Yk, > 2 a j y ~ , -  Y. a/YJk, 
i--1 t = l j - n  i--I j - I  

> T.,. Y~ ajyJk, -- 2 YJk, 
i = l j - n  j - - I  i--1 

t t. .-1 
>-_a. Z Tm.(Yk",) -- ~ aj 2 Tm.(y~,) Y~ ajNj (by(ii)) --J 

i - I  j = n + l  i--I 

> a . m .  - ~ aiM., .  - a . m . / 4  
j - n + l  

(by the choice of 1., (iv) and (vi)) 

>= a .m .  - a .m . /4  - a .m . /4  (by(v)) 

= a.mn/2. 

Since n was arbitrary and a . m .  --- oc by (iii), this completes the proof. �9 

PROOF OF COROLLARY 3.5. Let (x~") be a bad co-array in X = (Z X.)~ and 
let Rm denote the natural projection of X onto Xm. 

CLAIM. For all M < ~ there exists m, n ~ N  and a subsequence (y~) of 
(x~")~_ i such that (R,,(y~))~-I is an M-bad c0-sequence. 

Indeed if the claim is false we obtain, by Proposition 3.2, that there 
exists M < oo such that for all m, n E N  every subsequence of (x3)P-i con- 
tains a further subsequence (y~) with ][ Xi~rRm(Yi)II < M  for all finite 
F _ N. Fix n such that (xF)?-i is an (M + 3)-bad c0-sequence. By a gliding 
hump argument choose a subsequence (y i) of  (x;)~ and (m i) ~ [N] such that for 
all i ~ N: 

(i) sup., > m, II Rm Yi II =< i -  1, 
(ii) SUPm~{l,....,~,} II zf_,+1 Rmy, II <Mforp>i. 

Let p E N  and choose m ~ (mi - l ,  m~] for some i E N  (m0 = 0) such that 

j~ IYj - - - -  ~ Rm(Yj) . j=l 

Now 
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j--~l i - 1 ~+  
R m ( y j )  <--_ Rm(yj) + II Rm(Y,) II + R=(yj) 

j = l  j l 

(where we make the obvious adjustments i f p  < i). Thus by (i) and (ii) 

~ yj < = ( i - 1 ) ( i - 1 ) - ~ + l + M = M + 2 .  
j i 

This contradicts the fact that (x,")i is an (M + 3)-bad c0-sequence and estab- 
lishes the claim. 

By the claim we can choose an increasing sequence of integers N(n))~_l, a 
sequence of integers (M(n))~%l and subsequences (YF)i c_ (x~("))F= 1 such that 

(RMt,)(YF))~ is an n-bad c0-sequence for all n. Letting 

we see that the hypothesis of Proposition 3.4 is satisfied (for (xp) replaced by 

(yp) and X, replaced by XMt,)) and thus (y•), and hence (x~"), satisfies the ARP. 
This proves the first assertion of the corollary. 

If K is a countable compact limit ordinal a and ft, ~ a, then C(a),-, 
(Z C(fln))co. Thus by induction we see that C(a) satisfies the ARP for all such at. 
In view of the isomorphic classification of C(K) for K countable compact 
metric (see [BP2]) this completes the proof. �9 

PROOF OF PROPOSITION 3.6. The array (xr) satisfies l>_-JlxF JJ >_- 
infj JJ x 7 IJ > 0  for each n, i E N .  Since for each n, (xT)P_~ is weakly null, by 
passing to subsequences using the standard diagonal argument we may assume 
(x:) is basic. Moreover we may assume our array is now labeled in triangular 
fashion (x~")~ ~, ==i and is basic in the lexicographical order with "first letter" i 
and "second letter" n. (Thus the order is x~, x21, x 2, x], x 2 . . . . .  ) By renorming 
we may assume (x~) is a monotone basis in this order. 

It suffices to find for all n, a subsequence (~yp) of (x~) and a w*-compact 
countable set ~K~ c_ Ba(~r *) (~r  = [(lyT)]~==,zi) such that (ly F J IKOi is an 

M1/6-bad c0- sequence in C( ~K0. Indeed if this can be done, then we repeat the 
process inductively to further trim ( ly/~)2 ~, z ~ and obtain (23:/")2 <, ~ i and 2K 2 etc. 
The array (y~), ~ which satisfies the conclusion of the proposition is then given 

by (y,")~=. = ("yf)~=. and K. --~ "K. J tty;)l.=.~,- 0 fcourse  each K. is a quotient of 
"K. an thus is still countable and w*-compact. Having said all this we shall 
simplify the notation by writing (YF) and K~ in place of (tyf) and IK~ 
respectively. 
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LEMMA 3.7. There exists (I~)E[N] andf ini te  sets F n c_. [ - 1, 1] with the 

following properties. I f  y~ = xt~,for 1 < n < i and i f  kl < . . .  < kp are given such 

that II Y&, Y2, II > M , ,  then there exists f E 3 B a ( Y * ) ,  where Y = [(y~)~.:,.~], 

such that 

t 
'(a) Z,P_~ f(y2, ) > Ml/2, 

(A) (b) f(y~) ~ FF for n <= i, 

l(c) f(YF) = 0 i f i  q~ {kl . . . . .  kp}. 

Let us assume the lemma and show how to construct K~ with the desired 

properties. Let 

o f ' =  (kl . . . .  ,kp): 1 < M l f o r a l l r < p a n d  y~, >M1 �9 
"ffi i f f i l  

Clearly 31 r is countable and moreover ~ ,  the closure ofoW in 2 N, contains only 

finite sets. Indeed if (ki)E[N] n o~?, then for all p EN,  {ki}f=~ is a proper 

initial segment of  an element of  ~ .  In particular II Y fY2, II =<-M~ which 
contradicts that (x~) is a M~-bad c0-sequence. 

For each element (ki)l p ~ oW, choose an element f E  3Ba Y* which satisfies (A) 

of  Lemma 3.7. Let q = f13  and G~ = IF/~ for n < i. We let (~ be the set of all 

such g's. Note that for gEf r  g (yr )~GT.  For m >--0 let Qm be the basis 
projection of  Yonto [(yf) ; 1 < n < i _< m]. Of  course (y,~) is also a monotone 

basis in the lexicographic order, and so II Qm II --< 1. Let 

K1 = { Q * g ' g ~ ,  m > 0}. 

Clearly /(1 is a countable subset of  BaY* and by (a) of  (A) (y] It,) is an 

MI/6- bad Co- sequence. 

It remains only to check that K~ is w*- compact. Let (k,)C_C_ KI be w*- 

convergent to kEBa(Y*) .  Let k, = Q*g,  for some m, ~ N  and g, ~f~, and 

suppose that g, was derived from a set Am E ~ .  By passing to a subsequence we 

may assume that Am - ' A  E ~r AS we noted A must be finite. We may assume 

(g,) is w*- convergent to g ~ B a ( Y * ) .  By (b) and (c), if q = maxA, Qq*g, = 

Q*g = g for large n. Thus g ~ K  1. We may assume m, --* m or diverges to ~ .  

If m, ~ oo or m >_- q, then k = g~K1.  Otherwise Q~.g, ~ Qm*g = k and since 

Q * g E K I ,  k~K~.  �9 

The proof of Lemma 3.7 will make repeated use of  the following generaliza- 

tion of  a result of  Elton ([E], see also [O, Lemma 4.6]). 
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LEMMA 3.8. Let (x:)l~,<.~ be an array in X such that for all n, (xF)T-n is 
weakly null. Let B c_ Ba(X*). Then for all e > O, C < 00, n E N  and N E [ N ]  

there exists L E[N]  such that if (l~)~ c_ L with n <= lo < Ii < 12 < . . .  < lp and if  
there exists f ~ B  with Z]_~f+(xl~)>C, then there exists g E B  with 
Y.:=I g+(xl~) > C and Ig(xlom)l <e for 1 <-_ m <-_ n. 

PROOF. For  p ~ N let ~ p  = {I E [N] : I = (ii)ff_ o, io >_- n and if there exists 

f E B  with Y.:_~ f+(x~l) > C then there exists g E B  with Y.]=, g+(x~l) > C and 

I g(x~)] < e for 1 _-< m 5 n }. Let ~ -- i " l~  ~ ~p .  Each ~ is closed in [N] 

whence so is ~t. In particular ~ is Ramsey and so there exists L ~ IN] with 

[L] _ ~r or [L] c__ [ N ] \ ~ t .  If  [L] __ ~ we are done and thus suppose [L] C 

[ N ] \  ~r Let L = (lj)ff=o and fix p ~ N .  For q ___< p let L~ = {lq, l~+~, l~+2,.. .}. 

L ~ 6 ~ t  and thus L ~ , ,  for some rq. Thus there exists f ~ B  with 

Y.fL, f~+ (x~§ > C and if g ~ B with Zf~=l g + (x~+~) > C then for some 1 _-< m _-< 

n, Ig(x,7)l >_-e. 
Choose q0 such that rqo = min(rq : 1 =< q _-< p}. Thus 

5o 5 
C <  Y, f~+(x~+,) = < _ Y, f~+(x],,) for l_-<q=<p. 

j= l  j = l  

m, 
Hence for 1 < q < p there exists 1 < mr < n with 0(xl, )l > e. Let gp 
and let g E Ba (X*) be a w*-limit point of  (gp)~. It follows that for q E N there 

exists 1 _-< r~q ___ n with I g(xl~) I > e and hence one of  the n sequences, (xlm)~_ l. 
l =< m < n, is not weakly null, a contradiction. �9 

TERMINOLOGY. We shall say L is obtained from (B, e, C, n, N) by Lemma 
3.8. 

PROOF OF LEMMA 3.7. Let e =min{1 ,M1/4}  and let (b~")~z,~i be the 

biorthogonal functionals to the monotone  basis (x~")l =<, <i of  X. For 1 < n _-< i 

choose e~" > 0 such that 

(3.3) e," II br II < e. 
i = 1  n = l  

Let Hp be a finite e~"-net in [ - 1, 1] with 0 ~ H~ for each 1 _< n _-< i. Define 

B ~= { f~2Ba(X*): f (x~)~H~ for 1 _-< n _-< i}. Observe that by (3.3) given 
gEBa(X*) there exists f ~ B  I with If(x,") -g(x~)l  <eF for all 1 _-< n < i. In 

particular if g(Y~WF X] )> MI for some finite F _ N, then f(Yjer X ) ) >  3M1/4. 
Choose em> 0 so that 
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(3.4) ~ mere sup{ IIb~ I1" 1 < n  < j a n d  n < m } < e .  
m ~ l  

Note that the "sup" in (3.4) is finite since for all n, (xj")[_, is seminormalized.  

For m E N ,  let {C~ ' , . . . ,  C~m)} be an tm/2-net in (0, Mi]. Let L~ be obtained 

from (B~,eI, C ~ , I , N )  by Lemma  3.8. Let L~. [L~]  be obtained from 

(BI, el, C~, 1,L~) by 3.8. Continue until we obtain L~=--L~u ) f rom 
1 1 (B l, el, C~(o, 1, Lp(~)_ 1) by 3.8, and define l, = min L r This defines y~ = x~ and 

we let 1 _  FI = H i , .  

For  the second step (to obtain 12) we parti t ion B 1 into finitely many sets 

B 2 = { f E B l : f ( y ~ ) =  t}, t EF~. 

We apply Lemma  3.8 repeatedly to (B 2 , e2, C~, 2, L)  beginning with L = L1 

and letting t EF~ and 1 =< q _= p(2) vary independent ly  over all possibilities. 

At each application L will be the subsequence of  LI obtained f rom the previous 

step. Let L2 be the last sequence obtained and choose/2 ~ L2 with 12 > Ii. This 

defines y~' = xl~ and F~' = H]'~ for n = 1, 2. 

Let us briefly outline the induction step. Assume 11 < 12 < �9 �9 �9 < lm and Lm 
have been chosen in the manner  now described. This defines y~" = x  t," and 

/7,." = HI" for 1 < n _-< i < m. For every -t = (tp)~l ' I i~,~i~m F/" we set 

B~ +' = { f E B l :  f (yF) = t;,  1 <= n <= i <-_ m} .  

This partitions B"  into finitely many sets. We then apply Lemma  3.8 re- 
peatedly to (B~ + 1 Cg + 1 ,em + I, , m + 1, L), beginning with L = Lm, as -t and q 
range over all possibilities. We let Lm+l be the subsequence ult imately 

obtained and choose lm + 1 ELm + 1 with lm + 1 > lm.  
Thus (y~) and (FT) have been chosen such that 

~given n < kl < �9 �9 �9 < k,, if  there e x i s t s f ~ B  1 with 

P 

Y, f + ( y ~ , ) >  C~ for some 1 <-_q <=p(n), 
i=1 

then there exists g E B  1 with 
(B) 

P 

(a') Y, g+(y~, )>Cg,  
i m l  

(b') g(y•) = f ( y ~ )  for 1 < m _-< i < n, 

.(c') Ig(Y~)] < e ,  for 1 ___<m _-<n. 
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Let II ~L,y~,  II > M I .  As we noted above, there eixsts g E B  I with 
Y, fffil g+(Y),, ) > ~Mi. We shall show that (B) implies there exists h E B  l with 

(c)  

(a") ~ h +(y~, ) > MI/2, 
i = 1  

(b") I h (yDI  = 0 

h(y/~) I <ei 

if i > kp and 

i f / ~  {kl . . . .  , kp} or 

i fh (y~)  < 0 .  

Assuming (C), let's derive (A). By perturbing h we obtain r E X *  such that 

f (y/ ' )  = h (yF) if i ~ { kl, �9 �9 �9 kp } and h (y~) >_- 0 and f(y/" ) = 0 otherwise. From 
(C) we have 

k, i 
II f -  h II =< Y, e, Y, II b~,)II 

i l l  n = l  

< ~ ei" i .  sup{ li bfl I1" 1 ~ n ~ j and n < i} 
i = 1  

< e ~ l  by (3.4). 

Thus II f II ~ II h II + 1 =< 3 and clearly fsat isf ies  (A). 
It remains to show that (C) holds. Thus let g E B I such that Z t' g+ (y~, )>  

]MI. We shall apply (B) k f t i m e s  beginning with the function g. To start let 

C o = ] M ,  and f lo=0-  Choose C ~ = C q  ~ for some l = < q < p ( 1 )  such that 

0 < Co - Cl < el. I f  k, = 1 and g(y~) >-_ 0 we set h i  = g and let fll = gl(Y~) = 
h~-(y~). If  kl = 1 but  g(y~) < 0 we apply (B) to 1 < k2 < �9 �9 �9 < kp, g and CI. 

This yields hi E B ~ with Zf=l h+(y~, ) > CI and I h(y~l < el. We setfl, = hl+(y~). 
I f  k~ > 1 we apply (B) to 1 < kl < �9 �9 < k,, g and C~, obtaining hi ~ B  I with 

Zf=l h+(y~,) > C~ and I hl(y~) I < el. In this case we let fll = 0. 
Assume 1 < s < kp and hs E B  I and numbers  (fl/)~, (C~)1 have been chosen 

such that 

(i) O < ( C r - l - f l , - O - C r < e r f o r  1 < r < s .  
(ii) ~{i:ki>_s} h~ + (y),,) > Cs. 
(iii) If  1 < r < s and r = k~ for some 1 < i < p, then fir = h~ + (yr ~ ), otherwise 

s  
(iv) I hs(yrm)l < e, for 1 < m < r < s provided r q~ {kl . . . .  , k ,}  or hs(y~) < O. 

(Note that by our construction in the first step, all condit ions hold for s = 1.) 
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To construct hs+~, we first choose C~+~ = C~ § for some 1 < q <= p(s + 1) so 

that O<(C~-p~)-Cs+~<e~+~,  thus satisfying (i) for s + l .  (If 0 _  < 

C~ - ~ < e~ + ~ we set h = Q*h, and note that the estimates below show that h 

satisfies (C). I f s  + 1 = kj for some 1 < j  < p and h~(y~+~) > 0 we let hs+~ = h~ 

and p~+~ = h~++~(y~+~). Thus (iii) and (iv) hold for s + 1. To see (ii) for s + 1, 

we observe that (by (ii) and (i) for s) 

Y. Y. 
{i:ki>s + 1} {i:k,~s} 

I f  s + 1 = kj for some 1 < j  ~ p and h , (y~+~)<0  we apply (B) to s + 1 < 

k/+~ < kj+2 < - . .  < kp, h~ and Cs+ ~ to obtain h~+ ~ B L  

Note that (B) applies in this setting since 

P 
Y. h / ( y l )  

i = j +  1 {i:k ,>s+ 1} 

= Y. 
{i:ki~s} 

We then let p,+,  = h~++t(yt~+,). By (a') o f (B)  we have 

P 
h~++,(y~,)=h++,(Y~+,)+ Y, h++,(y~,)>C~+, 

{ i : k ~ s  + 1 ) i = j  + 1 

and thus (ii) holds for s + 1. (b') and (c') o f  (B) imply that (iv) is fulfilled for 

s + 1 and (iii) holds trivially. 

Finally i f s  + 1 ~{k~ . . . . .  kp}, say ki_, < s  + 1 < kj(k0 = 0), we apply (B) to 

s + 1 < kj < �9 �9 �9 < kp, hs and C, + ,. Note  that (B) applies since again 

P 

i = j  {i:ki>-_s} 

We let fls + ~ = 0 and thus the new function hs + ~ satisfies (iii) for s + 1. (ii) holds 

for s + 1 by (a') of  (B) and (iv) holds easily by (b') and (c') o f  (B). 

The construction is complete. Let h = Q~* hk, and we verify that h satisfies 

(C). h(yr) = 0 if  i > kp) and the remaining condit ions of  (b") hold by (iv) for 

hk,. It remains to show that (a") holds or equivalently that 

P 
y. (y',) > 

i = I  

Now 
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P P 

hk,+(Y],) = Y, fig, 
i~ l  i~ i  

(by(iii)) 

= Y~ fir-i + ilk, > ~ (C~_1 - C~ - er) + ilk, (by (i)) 
r ~ l  r f i  

k, 
= C o - -  Ck p --  ~ ~r 3ff ~kt, 

r~l 

>= Co - ~ e, (observing that flkp >= Ckp by (ii)) 
r= i  

=> a4Ml -- ~Ml = M / 2 ,  

since by (3.4), E~ e r < e ~ M/4 .  

4. Duality 

The natural dual analogue of property (S) (respectively, (US)) is the Schur 

property (respectively, strong Schur property). A Banach space X has the 

Schurproperty if given ~ > 0 every sequence (x,) _ Ba(X) with II x.  - x~ II >-- 
for n ~ m admits a subsequence which is C-equivalent to the unit vector 

basis ofli for some C. If C = 2K~- l with Kindependent of~ and the particular 

sequence (x,) we say that Xhas the K-strong Schur property [R2]. With the help 

of Theorem 3.1 we can strengthen a result of [HI to the following 

PROPOSITION 4.1. Let X be a Banach space not containing Ii. I f  X has 
property (S), then X* has the strong Schur property. 

PROOF. Let (f~) _c Ba(X*) with [I f~ - f m  II > ~for n :~ m. By passingto a 
subsequence we may assume that (fn) is w*- convergent to some f ~  Ba(X*). 
Let g, = f~ - f .  It follows from Theorem 3.1 and the proof of theorem l(e) in 
[H] that there is a constant C such that some subsequence of (gn) is 
2CO- l-equivalent to the unit vector basis of  11. Indeed let K be as in formula 

(2.1). (g.) is w*-null and we may suppose Ilgn II > ~ / 2  for all n. Choose 
(x,) C Ba(X) with g.(x,) > 6/2 for all n. By passing to subsequences we may 

assume (x,) is weak Cauchy and satisfies (2.1). Let e > 0  be arbitrary. By 

passing to subsequences and the standard perturbation argument we also may 

a s s u m e  g2n(X2n--X2n+l)~ > �89 for all n and g2n(X2ra--X2m+i)=0 for all 
m ~ n. It follows that for (ai) C_ R, 

Y. aig2i[ > g - ~ ( � 8 9  la, I. 
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From the following proposition we deduce that X* has the (K + q)-strong 
Schur property for all r />  O. �9 

II z aixi II 
N E N ,  

PROPOSITION 4.2. Let  (x~) be a sequence in a Banach space X satisfying 

> ~ Y I a, I for  all (a3 c_ R and some q > O. Let  x ~ X.  Then for  some 

for  all (a~) c_ R. 

a i ( x i + x )  >=0 ~ l a~l 
i = N + l  i = N + l  

PROOF. 

and scalars (bt)/N= 1 with z/v=, b i = 1 and 

N N 

(4.1) Y~ b,(x, + x )  < r  I Y~ 
i = 1  i = 1  

We can assume (or else we can take N = 0) that there exists N ~ N 

Let (a i )  c R and set A = Y~ ~ - -  i = N + I  ai. Thus 

Ib, I. 

l 
ai(xi + x) >= ( -- b~x~ + aix  i - A b~(x~ + x)  

i = N + l  = i = N + I  i = 1  

>__r/ Ia l  Y~ Ibi[ + la, I - I a l q  Ibil 
i = l  i = N + l  i = l  

(using the hypothesis and (4.1)) 

= rl ~ lail .  �9 
t = N + l  

(1) The analogue of Theorem 3.1 is false, even for dual 

It is easy to see that i fX = (Y.~=, X,)r X* has the Schur property, while failing 
the strong Schur property. 

(2) One might also wish to consider generalizations of Theorem 3.1 to lp 

(1 < p < oo). Let us say that a Banach space Xhas property (Sp) if every weakly 
null normalized sequence in X has a subsequence K-equivalent to the unit 
vector basis of lp for some K. X has property (USp) if K is independent of the 
particular sequence. These properties have been studied for subspaces X of Lp. 

ll(a')ll"=suplt,~e y" l a i l : F C N a n d  ,F, _-<n}. 

REMARK 4 .3 .  

spaces. Indeed using an example of J. Lindenstrauss (cf. [ JO] ) ,  let X, be a 
sequence space equipped with the norm 
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If X is a subspace of  L v (2 < p < oc) and X has (Sv) then X has (USv) and 
moreover X embeds into lp [JO]. However for 1 < p < 2 there exists X _C Lp 
with (Sp) but not (USp) [JO]. Johnson [J] has shown that i f X  c L v has (USp) 
then X embeds into l v. 

Added in proof. The authors have proved the following generalization of 
Theorem 3.1: Let X be a Banach space, 1 < p < oc , such that every weakly null 

sequence in Ba(X) admits a subsequence with a C-upper lp estimate for some C. 

Then C can be chosen independent o f  the sequence. 
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