ON c_0 SEQUENCES IN BANACH SPACES

BY

H. KNAUST[†] AND E. ODELL Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA

ABSTRACT

A Banach space has property (S) if every normalized weakly null sequence contains a subsequence equivalent to the unit vector basis of c_0 . We show that the equivalence constant can be chosen "uniformly", i.e., independent of the choice of the normalized weakly null sequence. Furthermore we show that a Banach space with property (S) has property (u). This solves in the negative the conjecture that a separable Banach space with property (u) not containing l_1 has a separable dual.

1. Introduction

A Banach space X is said to have property (S) if every normalized weakly null sequence in X admits a subsequence which is C-equivalent to the unit vector basis of c_0 for some $C < \infty$. If the constant C is independent of the particular sequence we say X has uniform (S) or (US). A second property relating the internal structure of a Banach space to that of c_0 is property (u). One way of formulating this property is to say X has property (u) if whenever (x_n) is a weak Cauchy but not weakly convergent sequence in X, there exists (y_n) , a block basis of convex combinations of (x_n) , which is equivalent to the summing basis for c_0 .

The definition of property (u) is due to A. Pełczyński [P]. He defined the property as follows. If $x^{**} \in X^{**}$ is the w^* -limit of a sequence in X then there exists $(y_n) \subseteq X$, which converges w^* to x^{**} and satisfies

$$\sum_{n=1}^{\infty} |x^*(y_{n+1}) - x^*(y_n)| < \infty \quad \text{for all } x^* \in X^*.$$

[†] This is part of this author's Ph.D. dissertation prepared at The University of Texas at Austin under the supervision of H. P. Rosenthal.

Research partially supported by NSF Grant DMS-8601752. Received October 7, 1988

(In the terminology of [HOR], $B_1(X) \subseteq DBSC(X)$.) The equivalence of our definition and Pełczyński's was noted in [HOR] and follows easily from the fact that if $(x_n) \subseteq X$ also converges ω^* to x^{**} , then dist(conv (x_n) , conv (y_n)) = 0. By [BP1] and [R], if X has property (u) and Y is any infinite dimensional subspace of X, then Y is reflexive or contains c_0 or l_1 . Since every subspace of a space with unconditional basis has property (u) [P], it was conjectured by J. Hagler that if X is a separable space with property (u) and not containing l_1 , then X* is separable (see [H]).

In §2 we prove that property (S) implies property (u). In view of the tree space JH constructed by Hagler [H] this yields a negative answer to the conjecture. Indeed Hagler showed JH has property (S), does not contain l_1 and has nonseparable dual.

Property (S) was considered by P. Cembranos in [C]. It was noted to be equivalent to the "hereditary Dunford Pettis property": every (infinite dimensional) subspace of X has the Dunford Pettis property. This equivalence follows easily from the deep "nearly unconditional" theorem (Theorem 2.4 below) of J. Elton ([E]; see also [O]). The question whether (S) implies (US) is raised in [C] (and was originally brought to our attention by A. Pełczyński). We show this to be true in §3. Part of our argument requires a generalization of Elton's argument for the aforementioned theorem.

A corollary of our two main results (see Corollary 2.3) is that X has property (S) iff there exists $C < \infty$ so that whenever $(x_n) \subseteq Ba(X)$ is weak Cauchy, there exists a subsequence (x'_n) with

$$\sum_{n=1}^{\infty} |x^*(x'_{n+1}) - x^*(x'_n)| \le C \quad \text{for all } x^* \in Ba(X^*).$$

(Equivalently

$$\left\|\sum_{n=1}^{k} \varepsilon_n (x'_{n+1} - x'_n)\right\| \leq C \quad \text{for all } k \text{ and } \varepsilon_i = \pm 1.\right)$$

This contrasts nicely with property (u) which may be described similarly except that (x'_n) is not necessarily a subsequence of (x_n) but rather a block basis of convex combinations of (x_n) .

We use standard Banach space terminology as may be found in the books [LT] or [D]. The proofs of both our main results require some Ramsey theory (as can be found in [O], [LT] or [D]). The summing basis for c_0 is the basis (s_n) given by $s_n = \sum_{i=1}^n e_i$, where (e_i) is the unit vector basis

of c_0 . Finally, it is perhaps worth noting that l_1 has property (S) and by [R], if X has property (S), then every infinite dimensional subspace of X contains l_1 or c_0 . Both properties (S) and (u) are hereditary (the later case is due to Pełczyński [P]).

We wish to thank H. Rosenthal for useful discussions regarding this paper.

2. Property (S) implies Property (u)

THEOREM 2.1. If X has property (S), then X has property (u).

We first review the Ramsey theorem we require. If M is an infinite subsequence of N, [M] denotes the set of all (infinite) subsequences of M. τ is the pointwise topology on [N], i.e., the relative topology of [N] $\subseteq 2^N$, given the product topology. $\mathscr{A} \subseteq [N]$ is said to be *Ramsey* if for all $M \in [N]$ there exists $L \in [M]$ such that either $[L] \subseteq \mathscr{A}$ or $[L] \subseteq [N] \setminus \mathscr{A}$. It is known that if \mathscr{A} is τ -Borel then \mathscr{A} is Ramsey [GP]. For a proof of this result, some history and more general results see [O].

PROOF OF THEOREM 2.1. Let $(x_n) \subseteq Ba(X)$ be weak Cauchy but not weakly convergent. By passing to a subsequence we may assume that (x_n) is basic and moreover (y_n) is seminormalized basic where $y_n \equiv x_{n+1} - x_n$ [BP1]. (Since X has property (S), we could have also assumed, by passing to a subsequence, that (y_{2n}) or (y_{2n-1}) is equivalent to the unit vector basis of c_0 . If we could obtain this simultaneously for both sequences, we would be finished and this is where Ramsey theory enters.)

For k and $K \in \mathbb{N}$ define

$$\mathscr{A}_{k}(K) = \left\{ M \in [\mathbb{N}] : M = (m_{i}) \text{ satisfies } \left\| \sum_{i=1}^{k} \varepsilon_{i} (x_{m_{2i}} - x_{m_{2i-1}}) \right\| \leq K$$

for all $\varepsilon = \pm 1, 1 \leq i \leq k \right\}.$

 $\mathscr{A}_k(K)$ is τ -closed and thus $\mathscr{A}(K) \equiv \bigcap_{k=1}^{\infty} \mathscr{A}_k(K)$ is also τ -closed and $\mathscr{A} \equiv \bigcup_{k=1}^{\infty} \mathscr{A}(K)$ is τ -Borel. Consequently \mathscr{A} is Ramsey. Choose $M = (m_i) \in [\mathbb{N}]$ so that either $[M] \subseteq \mathscr{A}$ or $[M] \subseteq [\mathbb{N}] \setminus \mathscr{A}$. Since X has property (S) we obtain $[M] \subseteq \mathscr{A}$. Thus $M \in \mathscr{A}(K_1)$ and $(m_i)_{i=2}^{\infty} \in \mathscr{A}(K_2)$ for some K_1, K_2 . It follows that for $x^* \in Ba(X^*)$,

$$\sum_{i=1}^{\infty} |x^*(x_{m_{i+1}}) - x^*(x_{m_i})|$$

$$= \sum_{i=1}^{\infty} |x^*(x_{m_{2i}}) - x^*(x_{m_{2i-1}})| + \sum_{i=1}^{\infty} |x^*(x_{m_{2i+1}}) - x^*(x_{m_{2i}})|$$

$$\leq K_1 + K_2.$$

In Pełczyński's terminology [P], $\sum x_{m_i}$ is a w.u. C. In particular $(x_{m_{i+1}} - x_{m_i})_{i=1}^{\infty}$ is equivalent to the unit vector basis of c_0 and so (x_{m_i}) is equivalent to the summing basis for c_0 .

REMARK 2.2. If X has property (US), the proof yields a fixed K satisfying: if (x_n) is a weak Cauchy sequence in Ba(X) then there exists a subsequence (x_m) with

(2.1)
$$\sum_{i=1}^{\infty} |x^*(x_{m_{i+1}}) - x^*(x_{m_i})| \leq K \quad \text{for all } x^* \in Ba(X^*).$$

In fact this turns out to be an equivalence.

COROLLARY 2.3. X has property (US) iff there exists $K < \infty$ such that if $(x_n) \subseteq Ba(X)$ is weak Cauchy, then there exists a subsequence (x_{m_i}) of (x_n) satisfying (2.1).

The proof requires Elton's nearly unconditional theorem which we first recall.

THEOREM 2.4 (Elton [E]). For $0 < \delta \leq 1$ there exists a constant $K(\delta) < \infty$ such that if (x_n) is a normalized weakly null sequence in a Banach space, then there exists a basic subsequence (x'_n) with the following property. If $(a_i)_1^n \subseteq \mathbf{R}$ with $|a_i| \leq 1$ for all *i*, and $F \subseteq \{i : |a_i| \geq \delta\}$, then

(2.2)
$$\left\|\sum_{i\in F}a_ix_i'\right\| \leq K(\delta) \left\|\sum_{i=1}^{\infty}a_ix_i'\right\|.$$

PROOF OF COROLLARY 2.3. By Remark 2.2 it suffices to show that X has property (US) if it satisfies the condition in the corollary. Let (x_n) be a normalized weakly null sequence in X which satisfies both the conclusion of Theorem 2.4 and condition (2.1). We may assume that $2^{-1} \sup |a_i| \leq \| \sum a_i x_i \|$ and thus we have (x_{2n}) is $2 \cdot K \cdot K(1)$ -equivalent to the unit vector basis of c_0 . Indeed if $F \subseteq \mathbb{N}$ is finite, then by (2.2) and (2.1)

Vol. 67, 1989

c₀ SEQUENCES

$$\left\|\sum_{n\in F} \pm x_{2n}\right\| \leq K(1) \left\|\sum_{n\in F} \pm (x_{2n} - x_{2n-1}) \leq K \cdot K(1)\right\|$$

3. Property (S) implies Property (US)

THEOREM 3.1. If X has property (S) then X has property (US).

One's first thoughts on this theorem are that it is false. The counterexample should be $X = (\Sigma X_n)_{c_0}$ where the X_n 's are a sequence of bad c_0 's (e.g., $X_n = C(\omega^n)$). However it is easy to construct in such a space a normalized weakly null sequence without a c_0 -subsequence. Theorem 3.1 is proved by showing that this construction can be carried out in general. We give some definitions to make this precise.

A sequence (x_n) in a Banach space X is called a c_0 -sequence if $||x_i|| \leq 1$ for all *i* and (x_i) is equivalent to the unit vector basis of c_0 . For $M < \infty$ we say (x_i) is an *M*-bad c_0 -sequence if (x_i) is a c_0 -sequence with the additional property that for all subsequences (x'_i) of (x_i) there exists $k \in \mathbb{N}$ such that $||\sum_{i=1}^k x'_i|| > M$. The following proposition, due to W. B. Johnson (see [O]), yields that if X has property (S) but fails to have (US), then X contains M-bad c_0 -sequences for all M.

PROPOSITION 3.2. Let (x_i) be a c_0 -sequence and let $M < \infty$. Then there exists a subsequence (x'_i) of (x_i) such that either

(a) (x'_i) is an M-bad c_0 -sequence, or

(b) $\| \sum_{i \in F} x'_i \| \leq M$ for all finite $F \subseteq N$.

PROOF. Let

$$\mathscr{A} = \left\{ L = (l_j) \in [\mathbf{N}] : \left\| \sum_{j=1}^k x_{l_j} \right\| \leq M \text{ for all } k \in \mathbf{N} \right\}.$$

A is τ -closed and therefore Ramsey. Choose $L \in [N]$ such that either $[L] \subseteq [N] \setminus \mathcal{A}$ or $[L] \subseteq \mathcal{A}$ and let $(x'_i) = (x_i)_{i \in L}$. In the first case we obtain (a) and in the second (b) holds.

We continue with some more definitions. A collection $(x_i^n)_{i,n\in\mathbb{N}} \subseteq X$ is called an array in X. An array (y_i^n) is a subarray of the array (x_i^n) if there exists $(m_n)_{n-1}^{\infty} \in [\mathbb{N}]$ such that for all $n \in \mathbb{N}$, $(y_i^n)_{i-1}^{\infty}$ is a subsequence of $(x_i^{m_n})_{i-1}^{\infty}$. An array (x_i^n) is a bad c_0 -array if there exists $M_n \to \infty$ such that for all $n \in \mathbb{N}$, $(x_i^n)_{i-1}^{\infty}$ is an M_n -bad c_0 -sequence.

A bad c_0 -array (x_i^n) satisfies the array procedure (ARP) if

(ARP)
$$\begin{cases} \text{there exists a subarray } (y_i^n) \text{ of } (x_i^n) \text{ and reals } a_n > 0 \text{ with } \sum_{n=1}^{\infty} a_n \leq 1 \\ \text{such that if } y_i = \sum_{n=1}^{\infty} a_n y_i^n, \text{ then } (y_i) \text{ has no } c_0 \text{-subsequence.} \end{cases}$$

We say X satisfies the ARP if every bad c_0 -array in X satisfies the ARP. Note that if X contains a bad c_0 -array and satisfies the ARP, then X fails (S). Indeed if X contains a bad c_0 -array then by a standard diagonal argument it contains a bad c_0 -array which is basic in some order. The sequence (y_n) given in (ARP) is thus seminormalized and weakly null. Proposition 3.2 yields that if X has (S) but fails (US) then X contains a bad c_0 -array. Thus Theorem 3.1 will follow from

THEOREM 3.3. Every Banach space satisfies the ARP.

The proof requires several steps which we now state as two propositions and a corollary.

PROPOSITION 3.4. Let (X_n) be a sequence of Banach spaces each of which satisfies the ARP. Let (x_i^n) be a bad c_0 -array in some Banach space X and for $m \in \mathbb{N}$ set $X^m = [(x_i^n) : i \in \mathbb{N}, n \ge m]$. Suppose that for all $m \in M$ there is a bounded linear operator $T_m : X^m \to X_m$ with $|| T_m || \le 1$, such that $(T_m x_i^m)_{i=1}^{\infty}$ is an m-bad c_0 -sequence in X_m . Then (x_i^n) satisfies the ARP.

COROLLARY 3.5. If (X_n) is a sequence of Banach spaces satisfying the ARP, then $(\Sigma X_n)_{c_0}$ satisfies the ARP. In particular if K is a countable compact metric space, then C(K) satisfies the ARP.

PROPOSITION 3.6. Let (x_i^n) be a bad c_0 -array such that $(x_i^n)_{i=1}^{\infty}$ is an M_n -bad c_0 -sequence for all n. Then there exists a subarray (y_i^n) of (x_i^n) and w*-compact countable subsets $K_n \subseteq Ba((Y^n)^*)$ (where $Y^n = [y_i^m : m \ge n, i \in \mathbb{N}]$) such that for all $n \in \mathbb{N}$, $(y_i^n \mid K_n)_{i=1}^{\infty}$ is an $M_n/6$ -bad c_0 -sequence in $C(K_n)$.

Assuming these three results we give the

PROOF OF THEOREM 3.3. Let (x_i^n) be a bad c_0 -array in X. By passing to a subarray, if necessary, we may assume that for $n \in \mathbb{N}$, $(x_i^n)_{i=1}^{\infty}$ is an M_n -bad c_0 -sequence with $M_n > 6n$. By Proposition 3.6 there exists a subarray (y_i^n) and w*-compact countable sets $K_n \subseteq Ba((Y^n)^*)$ such that $(y_i^n \mid_{K_n})_{i=1}^{\infty}$ is an *n*-bad c_0 -sequence. Define $T_n: Y^n \to C(K_n)$ by $T_n y = y \mid_{K_n}$ for $y \in Y^n$. By

Corollary 3.5, $C(K_n)$ satisfies the ARP and thus by Proposition 3.4, (y_i^n) satisfies the ARP.

It remains to prove 3.4, 3.5 and 3.6.

PROOF OF PROPOSITION 3.4. If there exists $m \in \mathbb{N}$ and a subarray (y_i^n) of (x_i^n) such that $(T_m(y_i^n))_{n,i}$ is a bad c_0 -array in X_m , then the fact that the ARP works for $(T_m(y_i^n))_{n,i}$ yields that the ARP works for (y_i^n) . Thus by passing to a subsequence of $(x_i^n)_i$, for each n, we may assume (by Proposition 3.2) that

(3.1)
$$\begin{cases} \text{for } m \in \mathbb{N} \text{ there exists } M_m < \infty \text{ such that} \\ \left\| \sum_{i \in F} T_m x_i^n \right\| \leq M_m \text{ for all } n > m \text{ and finite } F \subseteq \mathbb{N}. \end{cases}$$

We shall inductively choose $(m_n) \in [\mathbb{N}]$ and a subarray (y_i^n) of (x_i^n) , with $(y_i^n)_i = (x_i^{m_n})_i$ for all n, reals $a_n > 0$ with $\sum_{n=1}^{\infty} a_n \leq 1$ and a sequence of reals $(N_n)_{n=1}^{\infty}$ such that for all n:

- (i) $(T_{m_n}(y_i^n))_{i=1}^{\infty}$ is an m_n -bad c_0 -sequence in X_{m_n} .
- (ii) $\| \sum_{i \in F} y_i^n \| \leq N_n$ for finite $F \subseteq \mathbf{N}$.
- (iii) $a_n m_n > n$.

(iv)
$$\sum_{j=1}^{n-1} a_j N_j < a_n m_n/4$$
.

(v)
$$\sum_{j=n+1}^{\infty} a_j M_{m_n} < a_n m_n/4.$$

(vi) $\| \sum_{i \in F} T_{m_n}(y_i^l) \| \leq M_{m_n}$ for l > n and finite $F \subseteq \mathbb{N}$.

First note that (i) and (vi) will be automatically satisfied by the hypothesis of the proposition and (3.1). To start let $a_1 = \frac{1}{2}$ and choose $m_1 \in \mathbb{N}$ such that $a_1m_1 > 1$. This defines $(y_i^{1})_i = (x_i^{m_1})_i$ and since (y_i^{1}) is a c_0 -sequence we can choose N_1 to satisfy (ii) for n = 1. The only condition remaining to be satisfied for n = 1 is (v) and this will hold provided we require $a_j M_{m_1} < 2^{-j}a_1m_1/4$ for j > 1.

Let n > 1 and suppose that $(a_j)_{j=1}^{n-1}$, $(m_j)_{j=1}^{n-1}$ and $(N_j)_{j=1}^{n-1}$ have been chosen to satisfy (ii), (iii) and (iv) for "n" replaced by any integer less than n and in addition for $2 \le j < n$,

$$(3.2) 0 < a_j < \min\{2^{-j}, 2^{-j}a_km_k/4M_{m_k}: 1 \le k < j\}.$$

Choose $a_n > 0$ to satisfy (3.2) for "j" replaced by "n". Then choose $m_n \in \mathbb{N}$, $m_n > m_{n-1}$, such that (iii) and (iv) hold. Choose N_n so that (ii) holds. This completes the induction. Note that by (3.2), (v) holds for all n and $\sum_{j=1}^{\infty} a_j \leq 1$.

Let (y_k) be given by $y_k = \sum_{j=1}^{\infty} a_j y_k^j$ and let (y_{k_i}) be a subsequence of (y_k) . We shall show that $\sup_i || \sum_{i=1}^{l} y_{k_i} || = \infty$ and thus (y_k) has no c_0 -subsequence. Fix n and by (i) choose l_n such that $|| \sum_{i=1}^{l} T_{m_n}(y_{k_i}^n) || > m_n$. Thus

$$\left\| \sum_{i=1}^{l_{n}} y_{k_{i}} \right\| \geq \left\| \sum_{i=1}^{l_{n}} \sum_{j=n}^{\infty} a_{j} y_{k_{i}}^{j} \right\| - \left\| \sum_{i=1}^{l_{n}} \sum_{j=1}^{n-1} a_{j} y_{k_{i}}^{j} \right\|$$
$$\geq \left\| T_{m_{n}} \left(\sum_{i=1}^{l_{n}} \sum_{j=n}^{\infty} a_{j} y_{k_{i}}^{j} \right) \right\| - \sum_{j=1}^{n-1} a_{j} \left\| \sum_{i=1}^{l_{n}} y_{k_{i}}^{j} \right\|$$
$$\geq a_{n} \left\| \sum_{i=1}^{l_{n}} T_{m_{n}} (y_{k_{i}}^{n}) \right\| - \sum_{j=n+1}^{\infty} a_{j} \left\| \sum_{i=1}^{l_{n}} T_{m_{n}} (y_{k_{i}}^{j}) \right\| - \sum_{j=1}^{n-1} a_{j} N_{j} \text{ (by (ii))}$$
$$\geq a_{n} m_{n} - \sum_{j=n+1}^{\infty} a_{j} M_{m_{n}} - a_{n} m_{n} / 4$$
(by the choice of l_{n} (iv) and (vi))

(by the choice of l_n , (iv) and (vi))

$$\geq a_n m_n - a_n m_n / 4 - a_n m_n / 4 \quad (by (v))$$
$$= a_n m_n / 2.$$

Since n was arbitrary and $a_n m_n \rightarrow \infty$ by (iii), this completes the proof.

PROOF OF COROLLARY 3.5. Let (x_i^n) be a bad c_0 -array in $X = (\Sigma X_n)_{c_0}$ and let R_m denote the natural projection of X onto X_m .

CLAIM. For all $M < \infty$ there exists $m, n \in \mathbb{N}$ and a subsequence (y_i) of $(x_i^n)_{i=1}^{\infty}$ such that $(R_m(y_i))_{i=1}^{\infty}$ is an *M*-bad c_0 -sequence.

Indeed if the claim is false we obtain, by Proposition 3.2, that there exists $M < \infty$ such that for all $m, n \in \mathbb{N}$ every subsequence of $(x_i^n)_{i=1}^{\infty}$ contains a further subsequence (y_i) with $\|\sum_{i \in F} R_m(y_i)\| \leq M$ for all finite $F \subseteq \mathbb{N}$. Fix *n* such that $(x_i^n)_{i=1}^{\infty}$ is an (M + 3)-bad c_0 -sequence. By a gliding hump argument choose a subsequence (y_i) of $(x_i^n)_i$ and $(m_i) \in [\mathbb{N}]$ such that for all $i \in \mathbb{N}$:

(i) $\sup_{m>m_i} || R_m y_i || \leq i^{-1}$,

(ii) $\sup_{m \in \{1,...,m_i\}} \| \sum_{j=i+1}^p R_m y_j \| \le M$ for p > i. Let $p \in \mathbb{N}$ and choose $m \in (m_{i-1}, m_i]$ for some $i \in \mathbb{N}$ $(m_0 = 0)$ such that

$$\left\|\sum_{j=1}^p y_j\right\| = \left\|\sum_{j=1}^p R_m(y_j)\right\|.$$

Now

$$\left\|\sum_{j=1}^{p} R_{m}(y_{j})\right\| \leq \left\|\sum_{j=1}^{i-1} R_{m}(y_{j})\right\| + \left\|R_{m}(y_{i})\right\| + \left\|\sum_{j=i+1}^{p} R_{m}(y_{j})\right\|$$

(where we make the obvious adjustments if $p \leq i$). Thus by (i) and (ii)

$$\left\|\sum_{j=1}^{p} y_{j}\right\| \leq (i-1)(i-1)^{-1} + 1 + M = M + 2.$$

This contradicts the fact that $(x_i^n)_i$ is an (M + 3)-bad c_0 -sequence and establishes the claim.

By the claim we can choose an increasing sequence of integers $N(n))_{n=1}^{\infty}$, a sequence of integers $(M(n))_{n=1}^{\infty}$ and subsequences $(y_i^n)_i \subseteq (x_i^{N(n)})_{i=1}^{\infty}$ such that $(R_{M(n)}(y_i^n))_i$ is an *n*-bad c_0 -sequence for all *n*. Letting

$$T_n = R_{M(n)} \Big|_{[y_i']_{i \in \mathbb{N}, r \ge n}}$$

we see that the hypothesis of Proposition 3.4 is satisfied (for (x_i^n) replaced by (y_i^n) and X_n replaced by $X_{M(n)}$) and thus (y_i^n) , and hence (x_i^n) , satisfies the ARP. This proves the first assertion of the corollary.

If K is a countable compact limit ordinal α and $\beta_n \uparrow \alpha$, then $C(\alpha) \sim (\Sigma C(\beta_n))_{c_0}$. Thus by induction we see that $C(\alpha)$ satisfies the ARP for all such α . In view of the isomorphic classification of C(K) for K countable compact metric (see [BP2]) this completes the proof.

PROOF OF PROPOSITION 3.6. The array (x_i^n) satisfies $1 \ge ||x_i^n|| \ge \inf_j ||x_j^n|| > 0$ for each $n, i \in \mathbb{N}$. Since for each $n, (x_i^n)_{i=1}^{\infty}$ is weakly null, by passing to subsequences using the standard diagonal argument we may assume (x_i^n) is basic. Moreover we may assume our array is now labeled in triangular fashion $(x_i^n)_{1\le n\le i}$ and is basic in the lexicographical order with "first letter" i and "second letter" n. (Thus the order is $x_1^1, x_2^1, x_2^2, x_3^1, x_3^2, \ldots$.) By renorming we may assume (x_i^n) is a monotone basis in this order.

It suffices to find for all n, a subsequence $({}^{1}y_{i}^{n})$ of (x_{i}^{n}) and a w^{*} -compact countable set ${}^{1}K_{1} \subseteq Ba({}^{1}Y^{*})$ $({}^{1}Y = [({}^{1}y_{i}^{n})]_{1 \leq n \leq i})$ such that $({}^{1}y_{i}^{n} | {}^{1}K_{1})_{i}$ is an $M_{1}/6$ -bad c_{0} -sequence in $C({}^{1}K_{1})$. Indeed if this can be done, then we repeat the process inductively to further trim $({}^{1}y_{i}^{n})_{2 \leq n \leq i}$ and obtain $({}^{2}y_{i}^{n})_{2 \leq n \leq i}$ and ${}^{2}K_{2}$ etc. The array $(y_{i}^{n})_{n \leq i}$ which satisfies the conclusion of the proposition is then given by $(y_{i}^{n})_{i=n}^{\infty} = ({}^{n}y_{i}^{n})_{i=n}^{\infty}$ and $K_{n} \equiv {}^{n}K_{n} |_{[(y_{i}^{m})]_{n \leq m \leq i}}$. Of course each K_{n} is a quotient of ${}^{n}K_{n}$ an thus is still countable and w^{*} -compact. Having said all this we shall simplify the notation by writing (y_{i}^{n}) and K_{1} in place of $({}^{1}y_{i}^{n})$ and ${}^{1}K_{1}$ respectively. LEMMA 3.7. There exists $(l_i) \in [\mathbb{N}]$ and finite sets $F_i^n \subseteq [-1, 1]$ with the following properties. If $y_i^n = x_{l_i}^n$ for $1 \leq n \leq i$ and if $k_1 < \cdots < k_p$ are given such that $\|\sum_{i=1}^p y_{k_i}^1\| > M_1$, then there exists $f \in 3Ba(Y^*)$, where $Y = [(y_i^n)_{1 \leq n \leq i}]$, such that

(A)

$$\begin{cases}
(a) \ \Sigma_{i=1}^{p} f(y_{k_{i}}^{1}) > M_{1}/2, \\
(b) \ f(y_{i}^{n}) \in F_{i}^{n} \quad for \ n \leq i, \\
(c) \ f(y_{i}^{n}) = 0 \quad if \ i \notin \{k_{1}, \dots, k_{p}\}
\end{cases}$$

Let us assume the lemma and show how to construct K_1 with the desired properties. Let

$$\mathscr{K} = \left\{ (k_1, \ldots, k_p) : \left\| \sum_{i=1}^r y_{k_i}^1 \right\| \leq M_1 \text{ for all } r M_1 \right\}.$$

Clearly \mathscr{K} is countable and moreover $\bar{\mathscr{K}}$, the closure of \mathscr{K} in $2^{\mathbb{N}}$, contains only finite sets. Indeed if $(k_i) \in [\mathbb{N}] \cap \bar{\mathscr{K}}$, then for all $p \in \mathbb{N}$, $\{k_i\}_{i=1}^p$ is a proper initial segment of an element of \mathscr{K} . In particular $\|\Sigma_1^p y_{k_i}^1\| \leq M_1$ which contradicts that (x_i^1) is a M_1 -bad c_0 -sequence.

For each element $(k_i)_1^p \in \mathscr{K}$, choose an element $f \in 3BaY^*$ which satisfies (A) of Lemma 3.7. Let q = f/3 and $G_i^n = \frac{1}{3}F_i^n$ for $n \leq i$. We let \mathscr{G} be the set of all such g's. Note that for $g \in \mathscr{G}$, $g(y_i^n) \in G_i^n$. For $m \geq 0$ let Q_m be the basis projection of Y onto $[(y_i^n); 1 \leq n \leq i \leq m]$. Of course (y_i^n) is also a monotone basis in the lexicographic order, and so $||Q_m|| \leq 1$. Let

$$K_1 = \{ Q_m^* g : g \in \mathscr{G}, m \ge 0 \}.$$

Clearly K_1 is a countable subset of BaY^* and by (a) of (A) $(y_i^1 \mid_{K_1})$ is an $M_1/6$ -bad c_0 -sequence.

It remains only to check that K_1 is w^* -compact. Let $(k_n) \subseteq K_1$ be w^* convergent to $k \in Ba(Y^*)$. Let $k_n = Q_{m_n}^* g_n$ for some $m_n \in \mathbb{N}$ and $g_n \in \mathscr{G}$, and suppose that g_n was derived from a set $A_n \in \mathscr{K}$. By passing to a subsequence we may assume that $A_n \to A \in \mathscr{K}$. As we noted A must be finite. We may assume (g_n) is w^* -convergent to $g \in Ba(Y^*)$. By (b) and (c), if $q = \max A$, $Q_q^* g_n =$ $Q_q^* g = g$ for large n. Thus $g \in K_1$. We may assume $m_n \to m$ or diverges to ∞ . If $m_n \to \infty$ or $m \ge q$, then $k = g \in K_1$. Otherwise $Q_{m_n}^* g_n \to Q_m^* g = k$ and since $Q_m^* g \in K_1$, $k \in K_1$.

The proof of Lemma 3.7 will make repeated use of the following generalization of a result of Elton ([E], see also [O, Lemma 4.6]).

c_0 SEQUENCES

LEMMA 3.8. Let $(x_i^n)_{1 \le n \le i}$ be an array in X such that for all n, $(x_i^n)_{i=n}^{\infty}$ is weakly null. Let $B \subseteq Ba(X^*)$. Then for all $\varepsilon > 0$, $C < \infty$, $n \in \mathbb{N}$ and $N \in [\mathbb{N}]$ there exists $L \in [N]$ such that if $(l_i)_0^p \subseteq L$ with $n \le l_0 < l_1 < l_2 < \cdots < l_p$ and if there exists $f \in B$ with $\sum_{j=1}^p f^+(x_{l_j}^1) > C$, then there exists $g \in B$ with $\sum_{j=1}^p g^+(x_{l_j}^1) > C$ and $|g(x_{l_0}^m)| < \varepsilon$ for $1 \le m \le n$.

PROOF. For $p \in \mathbb{N}$ let $\mathscr{A}_p = \{I \in [\mathbb{N}] : I = (i_j)_{j=0}^{\infty}, i_0 \geq n \text{ and if there exists } f \in B \text{ with } \sum_{j=1}^{p} f^+(x_{i_j}^1) > C \text{ then there exists } g \in B \text{ with } \sum_{j=1}^{p} g^+(x_{i_j}^1) > C \text{ and } |g(x_{i_0}^m)| < \varepsilon \text{ for } 1 \leq m \leq n\}.$ Let $\mathscr{A} = \bigcap_{p=1}^{\infty} \mathscr{A}_p$. Each \mathscr{A}_p is closed in [N] whence so is \mathscr{A} . In particular \mathscr{A} is Ramsey and so there exists $L \in [N]$ with $[L] \subseteq \mathscr{A}$ or $[L] \subseteq [\mathbb{N}] \setminus \mathscr{A}$. If $[L] \subseteq \mathscr{A}$ we are done and thus suppose $[L] \subseteq [\mathbb{N}] \setminus \mathscr{A}$. Let $L = (l_j)_{j=0}^{\infty}$ and fix $p \in \mathbb{N}$. For $q \leq p$ let $L_q = \{l_q, l_{p+1}, l_{p+2}, \ldots\}$. $L_q \notin \mathscr{A}$ and thus $L_q \notin \mathscr{A}_{r_q}$ for some r_q . Thus there exists $f_q \in B$ with $\sum_{j=1}^{r_q} f_q^+(x_{l_{p+j}}^1) > C$ and if $g \in B$ with $\sum_{j=1}^{r_q} g^+(x_{l_{p+j}}^1) > C$ then for some $1 \leq m \leq n$, $|g(x_{l_q}^m)| \geq \varepsilon$.

Choose q_0 such that $r_{q_0} = \min\{r_q : 1 \le q \le p\}$. Thus

$$C < \sum_{j=1}^{r_{q_0}} f_{q_0}^+(x_{l_{p+j}}^1) \leq \sum_{j=1}^{r_q} f_{q_0}^+(x_{l_{p+j}}^1) \quad \text{for } 1 \leq q \leq p.$$

Hence for $1 \le q \le p$ there exists $1 \le m_q \le n$ with $|f_{q_0}(x_{l_q}^{m_q})| \ge \varepsilon$. Let $g_p = f_{q_0}$ and let $g \in Ba(X^*)$ be a w*-limit point of $(g_p)_1^{\infty}$. It follows that for $q \in \mathbb{N}$ there exists $1 \le m_q \le n$ with $|g(x_{l_q}^{m_q})| > \varepsilon$ and hence one of the *n* sequences, $(x_{l_q}^m)_{q=1}^{\infty}$. $1 \le m \le n$, is not weakly null, a contradiction.

TERMINOLOGY. We shall say L is obtained from $(B, \varepsilon, C, n, N)$ by Lemma 3.8.

PROOF OF LEMMA 3.7. Let $\varepsilon = \min\{1, M_1/4\}$ and let $(b_i^n)_{1 \le n \le i}$ be the biorthogonal functionals to the monotone basis $(x_i^n)_{1 \le n \le i}$ of X. For $1 \le n \le i$ choose $\varepsilon_i^n > 0$ such that

(3.3)
$$\sum_{i=1}^{\infty}\sum_{n=1}^{i}\varepsilon_{i}^{n} \parallel b_{i}^{n} \parallel < \varepsilon.$$

Let H_i^n be a finite ε_i^n -net in [-1, 1] with $0 \in H_i^n$ for each $1 \le n \le i$. Define $B^1 = \{ f \in 2Ba(X^*) : f(x_i^n) \in H_i^n \text{ for } 1 \le n \le i \}$. Observe that by (3.3) given $g \in Ba(X^*)$ there exists $f \in B^1$ with $|f(x_i^n) - g(x_i^n)| < \varepsilon_i^n$ for all $1 \le n \le i$. In particular if $g(\Sigma_{j \in F} x_j^1) > M_1$ for some finite $F \subseteq \mathbb{N}$, then $f(\Sigma_{j \in F} x_j^1) > 3M_1/4$.

Choose $\varepsilon_m > 0$ so that

(3.4)
$$\sum_{m=1}^{\infty} m \varepsilon_m \sup\{ \| b_j^n \| : 1 \le n \le j \text{ and } n \le m \} < \varepsilon.$$

Note that the "sup" in (3.4) is finite since for all n, $(x_j^n)_{j=n}^{\infty}$ is seminormalized. For $m \in \mathbb{N}$, let $\{C_1^m, \ldots, C_{p(m)}^m\}$ be an $\varepsilon_m/2$ -net in $(0, M_1]$. Let L_1^1 be obtained from $(B^1, \varepsilon_1, C_1^1, 1, \mathbb{N})$ by Lemma 3.8. Let $L_2^1 \in [L_1^1]$ be obtained from $(B^1, \varepsilon_1, C_2^1, 1, L_1^1)$ by 3.8. Continue until we obtain $L_1 \equiv L_{p(1)}^1$ from $(B^1, \varepsilon_1, C_{p(1)}^1, 1, L_{p(1)-1}^1)$ by 3.8, and define $l_1 = \min L_1$. This defines $y_1^1 = x_{l_1}^1$ and we let $F_1^1 \equiv H_{l_1}^1$.

For the second step (to obtain l_2) we partition B^1 into finitely many sets

$$B_t^2 = \{ f \in B^1 : f(y_1^1) = t \}, \qquad t \in F_1^1.$$

We apply Lemma 3.8 repeatedly to $(B_i^2, \varepsilon_2, C_q^2, 2, L)$ beginning with $L = L_1$ and letting $t \in F_1^1$ and $1 \le q \le p(2)$ vary independently over all possibilities. At each application L will be the subsequence of L_1 obtained from the previous step. Let L_2 be the last sequence obtained and choose $l_2 \in L_2$ with $l_2 > l_1$. This defines $y_2^n = x_b^n$ and $F_2^n = H_b^n$ for n = 1, 2.

Let us briefly outline the induction step. Assume $l_1 < l_2 < \cdots < l_m$ and L_m have been chosen in the manner now described. This defines $y_i^n = x_{l_i}^n$ and $F_i^n = H_{l_i}^n$ for $1 \le n \le i \le m$. For every $\vec{t} = (t_i^n) \in \prod_{1 \le n \le i \le m} F_i^n$ we set

$$B_i^{m+1} = \{ f \in B^1 : f(y_i^n) = t_i^n, 1 \le n \le i \le m \}.$$

This partitions B^m into finitely many sets. We then apply Lemma 3.8 repeatedly to $(B_i^{m+1}, \varepsilon_{m+1}, C_q^{m+1}, m+1, L)$, beginning with $L = L_m$, as t and q range over all possibilities. We let L_{m+1} be the subsequence ultimately obtained and choose $l_{m+1} \in L_{m+1}$ with $l_{m+1} > l_m$.

Thus (y_i^n) and (F_i^n) have been chosen such that

$$\begin{cases} \text{given } n < k_1 < \dots < k_p, \text{ if there exists } f \in B^1 \text{ with} \\ \sum_{i=1}^p f^+(y_{k_i}^1) > C_q^n \text{ for some } 1 \leq q \leq p(n), \\ \text{then there exists } g \in B^1 \text{ with} \\ (a') \sum_{i=1}^p g^+(y_{k_i}^1) > C_q^n, \\ (b') g(y_i^m) = f(y_i^m) \text{ for } 1 \leq m \leq i < n, \\ (c') |g(y_n^m)| < \varepsilon_n \text{ for } 1 \leq m \leq n. \end{cases}$$

(B)

Let $\|\sum_{i=1}^{p} y_{k_i}^1\| > M_1$. As we noted above, there eixsts $g \in B^1$ with $\sum_{i=1}^{p} g^+(y_{k_i}^1) > \frac{3}{4}M_1$. We shall show that (B) implies there exists $h \in B^1$ with

(C)
$$\begin{cases} (a'') \sum_{i=1}^{p} h^{+}(y_{k_{i}}^{1}) > M_{1}/2, \\ (b'') |h(y_{i}^{n})| = 0 \quad \text{if } i > k_{p} \text{ and} \\ h(y_{i}^{n})| < \varepsilon_{i} \quad \text{if } i \notin \{k_{1}, \dots, k_{p}\} \text{ or} \\ & \text{if } h(y_{i}^{1}) < 0. \end{cases}$$

Assuming (C), let's derive (A). By perturbing h we obtain $f \in X^*$ such that $f(y_i^n) = h(y_i^n)$ if $i \in \{k_1, \ldots, k_p\}$ and $h(y_i^1) \ge 0$ and $f(y_i^n) = 0$ otherwise. From (C) we have

$$\| f - h \| \leq \sum_{i=1}^{k_{p}} \varepsilon_{i} \sum_{n=1}^{i} \| b_{l(i)}^{n} \|$$
$$\leq \sum_{i=1}^{\infty} \varepsilon_{i} \cdot i \cdot \sup\{ \| b_{j}^{n} \| : 1 \leq n \leq j \text{ and } n \leq i \}$$
$$< \varepsilon \leq 1 \quad \text{by (3.4).}$$

Thus $|| f || \le || h || + 1 \le 3$ and clearly f satisfies (A).

It remains to show that (C) holds. Thus let $g \in B^1$ such that $\sum_{i}^{p} g^+(y_{k_i}^1) > \frac{3}{4}M_1$. We shall apply (B) k_p -times beginning with the function g. To start let $C_0 = \frac{3}{4}M_1$ and $\beta_0 = 0$. Choose $C_1 = C_q^1$ for some $1 \le q \le p(1)$ such that $0 < C_0 - C_1 < \varepsilon_1$. If $k_1 = 1$ and $g(y_1^1) \ge 0$ we set $h_1 = g$ and let $\beta_1 = g_1(y_1^1) = h_1^+(y_1^1)$. If $k_1 = 1$ but $g(y_1^1) < 0$ we apply (B) to $1 < k_2 < \cdots < k_p$, g and C_1 . This yields $h_1 \in B^1$ with $\sum_{i=1}^{p} h_1^+(y_{k_i}^1) > C_1$ and $|h(y_1^1| < \varepsilon_1$. We set $\beta_1 = h_1^+(y_1^1)$. If $k_1 > 1$ we apply (B) to $1 < k_2 < \cdots < k_p$, g and C_1 . This yields $h_1 \in B^1$ with $\sum_{i=1}^{p} h_1^+(y_{k_i}^1) > C_1$ and $|h(y_1^1| < \varepsilon_1)$. We set $\beta_1 = h_1^+(y_1^1)$. If $k_1 > 1$ we apply (B) to $1 < k_1 < \cdots < k_p$, g and C_1 , obtaining $h_1 \in B^1$ with $\sum_{i=1}^{p} h_1^+(y_{k_i}^1) > C_1$ and $|h_1(y_1^1)| < \varepsilon_1$. In this case we let $\beta_1 = 0$.

Assume $1 \leq s < k_p$ and $h_s \in B^1$ and numbers $(\beta_i)_1^s$, $(C_i)_1^s$ have been chosen such that

(i)
$$0 < (C_{r-1} - \beta_{r-1}) - C_r < \varepsilon_r$$
 for $1 \le r \le s$.

(ii) $\Sigma_{\{i:k_i \ge s\}} h_s^+(y_{k_i}^1) > C_s$.

(iii) If $1 \le r \le s$ and $r = k_i$ for some $1 \le i \le p$, then $\beta_r = h_s^+(y_r^1)$, otherwise $\beta_r = 0$.

(iv) $|h_s(y_r^m)| < \varepsilon_r$ for $1 \le m \le r \le s$ provided $r \notin \{k_1, \ldots, k_p\}$ or $h_s(y_r^1) < 0$. (Note that by our construction in the first step, all conditions hold for s = 1.) To construct h_{s+1} , we first choose $C_{s+1} = C_q^{s+1}$ for some $1 \le q \le p(s+1)$ so that $0 < (C_s - \beta_s) - C_{s+1} < \varepsilon_{s+1}$, thus satisfying (i) for s+1. (If $0 \le C_s - \beta_s < \varepsilon_{s+1}$ we set $h = Q_s^* h_s$ and note that the estimates below show that hsatisfies (C). If $s+1 = k_j$ for some $1 \le j \le p$ and $h_s(y_{s+1}^1) \ge 0$ we let $h_{s+1} = h_s$ and $\beta_{s+1} = h_{s+1}^+(y_{s+1}^1)$. Thus (iii) and (iv) hold for s+1. To see (ii) for s+1, we observe that (by (ii) and (i) for s)

$$\sum_{\{i:k_i \ge s+1\}} h_{s+1}^+(y_{k_i}^1) = \sum_{\{i:k_i \ge s\}} h_s^+(y_{k_i}^1) - \beta_s > C_s - \beta_s > C_{s+1}.$$

If $s + 1 = k_j$ for some $1 \le j \le p$ and $h_s(y_{s+1}^1) < 0$ we apply (B) to $s + 1 < k_{j+1} < k_{j+2} < \cdots < k_p$, h_s and C_{s+1} to obtain $h_{s+1} \in B^1$.

Note that (B) applies in this setting since

$$\sum_{i=j+1}^{p} h_{s}^{+}(y_{k_{i}}^{1}) = \sum_{\{i:k_{i} \ge s+1\}} h_{s}^{+}(y_{k_{i}}^{1})$$
$$= \sum_{\{i:k_{i} \ge s\}} h_{s}^{+}(y_{k_{i}}^{1}) - \beta_{s} > C_{s} - \beta_{s} > C_{s+1}.$$

We then let $\beta_{s+1} = h_{s+1}^+ (y_{s+1}^1)$. By (a') of (B) we have

$$\sum_{\{i:k_i \ge s+1\}} h_{s+1}^+(y_{k_i}^1) = h_{s+1}^+(y_{s+1}^1) + \sum_{i=j+1}^p h_{s+1}^+(y_{k_i}^1) > C_{s+1}$$

and thus (ii) holds for s + 1. (b') and (c') of (B) imply that (iv) is fulfilled for s + 1 and (iii) holds trivially.

Finally if $s + 1 \notin \{k_1, \ldots, k_p\}$, say $k_{j-1} < s + 1 < k_j (k_0 = 0)$, we apply (B) to $s + 1 < k_j < \cdots < k_p$, h_s and C_{s+1} . Note that (B) applies since again

$$\sum_{i=j}^{p} h_{s}^{+}(y_{k_{i}}^{1}) = \sum_{\{i:k_{i} \geq s\}} h_{s}^{+}(y_{k_{i}}^{1}) - \beta_{s} > C_{s} - \beta_{s} > C_{s+1}.$$

We let $\beta_{s+1} = 0$ and thus the new function h_{s+1} satisfies (iii) for s + 1. (ii) holds for s + 1 by (a') of (B) and (iv) holds easily by (b') and (c') of (B).

The construction is complete. Let $h = Q_{k_p}^* h_{k_p}$ and we verify that h satisfies (C). $h(y_i^n) = 0$ if $i > k_p$) and the remaining conditions of (b") hold by (iv) for h_{k_p} . It remains to show that (a") holds or equivalently that

$$\sum_{i=1}^{p} h_{k_{p}}^{+}(y_{k_{i}}^{1}) > M_{1}/2.$$

Now

$$\sum_{i=1}^{p} h_{k_{p}}^{+}(y_{k_{i}}^{1}) = \sum_{i=1}^{p} \beta_{k_{i}} \quad (by (iii))$$

$$= \sum_{r=1}^{k_{p}} \beta_{r-1} + \beta_{k_{p}} \ge \sum_{r=1}^{k_{p}} (C_{r-1} - C_{r} - \varepsilon_{r}) + \beta_{k_{p}} \quad (by (i))$$

$$= C_{0} - C_{k_{p}} - \sum_{r=1}^{k_{p}} \varepsilon_{r} + \beta_{k_{p}}$$

$$\ge C_{0} - \sum_{r=1}^{\infty} \varepsilon_{r} \quad (observing that \beta_{k_{p}} \ge C_{k_{p}} by (ii))$$

$$\ge \frac{3}{4}M_{1} - \frac{1}{4}M_{1} = M_{1}/2,$$

since by (3.4), $\Sigma_1^{\infty} \varepsilon_r < \varepsilon \leq M_1/4$.

4. Duality

The natural dual analogue of property (S) (respectively, (US)) is the Schur property (respectively, strong Schur property). A Banach space X has the Schur property if given $\delta > 0$ every sequence $(x_n) \subseteq Ba(X)$ with $||x_n - x_m|| \ge \delta$ for $n \neq m$ admits a subsequence which is C-equivalent to the unit vector basis of l_1 for some C. If $C = 2K\delta^{-1}$ with K independent of δ and the particular sequence (x_n) we say that X has the K-strong Schur property [R2]. With the help of Theorem 3.1 we can strengthen a result of [H] to the following

PROPOSITION 4.1. Let X be a Banach space not containing l_1 . If X has property (S), then X* has the strong Schur property.

PROOF. Let $(f_n) \subseteq Ba(X^*)$ with $||| f_n - f_m || > \delta$ for $n \neq m$. By passing to a subsequence we may assume that (f_n) is w^* - convergent to some $f \in Ba(X^*)$. Let $g_n = f_n - f$. It follows from Theorem 3.1 and the proof of theorem 1(e) in [H] that there is a constant C such that some subsequence of (g_n) is $2C\delta^{-1}$ -equivalent to the unit vector basis of l_1 . Indeed let K be as in formula (2.1). (g_n) is w^* -null and we may suppose $|| g_n || > \delta/2$ for all n. Choose $(x_n) \subseteq Ba(X)$ with $g_n(x_n) > \delta/2$ for all n. By passing to subsequences we may assume (x_n) is weak Cauchy and satisfies (2.1). Let $\varepsilon > 0$ be arbitrary. By passing to subsequences and the standard perturbation argument we also may assume $g_{2n}(x_{2n} - x_{2n+1}) > \frac{1}{2}\delta - \varepsilon$ for all n and $g_{2n}(x_{2m} - x_{2m+1}) = 0$ for all $m \neq n$. It follows that for $(a_i) \subseteq \mathbf{R}$,

$$\left\|\sum a_i g_{2i}\right\| \geq K^{-1}(\frac{1}{2}\delta - \varepsilon) \sum |a_i|.$$

From the following proposition we deduce that X^* has the $(K + \eta)$ -strong Schur property for all $\eta > 0$.

PROPOSITION 4.2. Let (x_i) be a sequence in a Banach space X satisfying $\| \Sigma a_i x_i \| \ge \eta \Sigma |a_i|$ for all $(a_i) \subseteq \mathbf{R}$ and some $\eta > 0$. Let $x \in X$. Then for some $N \in \mathbf{N}$,

$$\sum_{i=N+1}^{\infty} a_i(x_i+x) \bigg\| \geq \eta \sum_{i=N+1}^{\infty} |a_i|$$

for all $(a_i) \subseteq \mathbf{R}$.

PROOF. We can assume (or else we can take N = 0) that there exists $N \in \mathbb{N}$ and scalars $(b_i)_{i=1}^N$ with $\sum_{i=1}^N b_i = 1$ and

(4.1)
$$\left\|\sum_{i=1}^{N}b_{i}(x_{i}+x)\right\| < \eta \sum_{i=1}^{N}|b_{i}|.$$

Let $(a_i) \subseteq \mathbf{R}$ and set $A = \sum_{i=N+1}^{\infty} a_i$. Thus

$$\left\|\sum_{i=N+1}^{\infty} a_i(x_i+x)\right\| \ge \left\|(-A)\sum_{i=1}^{N} b_i x_i + \sum_{i=N+1}^{\infty} a_i x_i\right\| - \left\|A\sum_{i=1}^{N} b_i(x_i+x)\right\|$$
$$\ge \eta \left(|A|\sum_{i=1}^{N} |b_i| + \sum_{i=N+1}^{\infty} |a_i|\right) - |A|\eta \sum_{i=1}^{N} |b_i|$$

(using the hypothesis and (4.1))

$$=\eta\sum_{i=N+1}^{\infty}|a_i|.$$

REMARK 4.3. (1) The analogue of Theorem 3.1 is false, even for dual spaces. Indeed using an example of J. Lindenstrauss (cf. [JO]), let X_n be a sequence space equipped with the norm

$$\|(a_i)\|_n = \sup\left\{\sum_{i\in F} |a_i|: F\subseteq \mathbb{N} \text{ and } |F| \leq n\right\}.$$

It is easy to see that if $X = (\sum_{n=1}^{\infty} X_n)_{c_0}$, X* has the Schur property, while failing the strong Schur property.

(2) One might also wish to consider generalizations of Theorem 3.1 to l_p $(1 . Let us say that a Banach space X has property <math>(S_p)$ if every weakly null normalized sequence in X has a subsequence K-equivalent to the unit vector basis of l_p for some K. X has property (US_p) if K is independent of the particular sequence. These properties have been studied for subspaces X of L_p .

If X is a subspace of L_p $(2 and X has <math>(S_p)$ then X has (US_p) and moreover X embeds into l_p [JO]. However for $1 there exists <math>X \subseteq L_p$ with (S_p) but not (US_p) [JO]. Johnson [J] has shown that if $X \subseteq L_p$ has (US_p) then X embeds into l_p .

Added in proof. The authors have proved the following generalization of Theorem 3.1: Let X be a Banach space, $1 \leq p < \infty$, such that every weakly null sequence in Ba(X) admits a subsequence with a C-upper l_p estimate for some C. Then C can be chosen independent of the sequence.

References

[BP1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Stud. Math. 17 (1958), 151-164.

[BP2] C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Stud. Math. 19 (1960), 53-62.

[C] P. Cembranos, The hereditary Dunford-Pettis-property on C(K, E), Ill. J. Math. 31 (1987), 365-373.

[D] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.

[E] J. Elton, Thesis, Yale University, New Haven, CT.

[GP] F. Galvin and K. Prikry, Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (1973), 193-198.

[H] J. Hagler, A counterexample to several questions about Banach spaces, Stud. Math. 60 (1977), 289-307.

[HOR] R. Haydon, E. Odell and H. Rosenthal, On certain subclasses of Baire-1 functions and their applications to Banach space theory, in preparation.

[J] W. B. Johnson, On quotients of L_p which are quotients of l_p , Compos. Math. 34 (1977), 69–89.

[JO] W. B. Johnson and E. Odell, Subspaces of L_p which embed into l_p , Compos. Math. 28 (1974), 37-49.

[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1979.

[O] E. Odell, Applications of Ramsey theorems to Banach space theory, Univ. of Texas Press, Austin, 1981.

[P] A. Pełczyński, A connection between weakly unconditional convergence and weakly completeness of Banach spaces, Bull. Acad. Polon. Sci. 6 (1958), 251–253.

[R] H. P. Rosenthal, A characterization of Banach spaces containing l₁, Proc. Natl. Acad. Sci. U.S.A. 71 (1974), 2411–2413.

[R2] H. P. Rosenthal, Seminar Notes, University of Paris.